509 research outputs found

    Orbitofrontal gray matter relates to early morning awakening: a neural correlate of insomnia complaints?

    Get PDF
    Sleep complaints increase profoundly with age; prevalence estimates of insomnia in elderly people reach up to 37%. The three major types of nocturnal complaints are difficulties initiating sleep (DIS), difficulties maintaining sleep (DMS) and early morning awakening (EMA), of which the latter appears most characteristic for aging. The neural correlates associated with these complaints have hardly been investigated, hampering the development of rational treatment and prevention. A recent study on structural brain correlates of insomnia showed that overall severity, but not duration, of insomnia complaints is associated with lower gray matter (GM) density in part of the left orbitofrontal cortex. Following up on this, we investigated, in an independent sample of people not diagnosed with insomnia, whether individual differences in GM density are associated with differences in DIS, DMS and EMA.65 healthy participants filled out questionnaires and underwent structural magnetic resonance imaging. Three compound Z-scores were computed for questionnaire items relating to DIS, DMS and EMA. Whole-brain voxel-based morphometry was used to investigate their association with GM density. Results show that participants with lower GM density in a region where the left inferior orbitofrontal cortex borders the insula report more EMA, but not DIS or DMS.This is the first study to investigate structural brain correlates of specific sleep characteristics that can translate into complaints in insomniacs. The selective association of EMA with orbitofrontal GM density makes our findings particularly relevant to elderly people, where EMA represents the most characteristic complaint. It is hypothesized that low GM density in aforementioned orbitofrontal area affects its role in sensing comfort. An intact ability to evaluate comfort may be crucial to maintain sleep, especially at the end of the night when sleep is vulnerable because homeostatic sleep propensity has dissipated

    The effect of computer-based cognitive flexibility training on recovery of executive function after stroke: rationale, design and methods of the TAPASS study

    Get PDF
    Background: Stroke survivors frequently suffer from executive impairments even in the chronic phase after stroke, and there is a need for improved rehabilitation of these functions. One way of improving current rehabilitation treatment may be by online cognitive training. Based on a review of the effectiveness of computer-based cognitive training in healthy elderly, we concluded that cognitive flexibility may be a key element for an effective training, which results in improvements not merely on trained tasks but also in untrained tasks (i.e., far transfer). The aim of the current study was to track the behavioral and neural effects of computer-based cognitive flexibility training after stroke. We expected that executive functioning would improve after the cognitive flexibility training, and that neural activity and connectivity would normalize towards what is seen in healthy elderly. Methods/design: The design was a multicenter, double blind, randomized controlled trial (RCT) with three groups: an experimental intervention group, an active control group who did a mock training, and a waiting list control group. Stroke patients (3 months to 5 years post-stroke) with cognitive complaints were included. Training consisted of 58 half-hour sessions spread over 12 weeks. The primary study outcome was objective executive function. Secondary measures were improvement on training tasks, cognitive flexibility, objective cognitive functioning in other domains than the executive domain, subjective cognitive and everyday life functioning, and neural correlates assessed by both structural and resting-state functional Magnetic Resonance Imaging. The three groups were compared at baseline, after six and twelve weeks of training, and four weeks after the end of the training. Furthermore, they were compared to healthy elderly who received the same training. Discussion: The cognitive flexibility training consisted of several factors deemed important for effects that go beyond improvement on merely the training task themselves. Due to the presence of two control groups, the effects of the training could be compared with spontaneous recovery and with the effects of a mock training. This study provides insight into the potential of online cognitive flexibility training after stroke. We also compared its results with the effectiveness of the same training in healthy elderly

    On the connection between level of education and the neural circuitry of emotion perception

    Get PDF
    Through education, a social group transmits accumulated knowledge, skills, customs, and values to its members. So far, to the best of our knowledge, the association between educational attainment and neural correlates of emotion processing has been left unexplored. In a retrospective analysis of The Netherlands Study of Depression and Anxiety (NESDA) functional magnetic resonance imaging (fMRI) study, we compared two groups of fourteen healthy volunteers with intermediate and high educational attainment, matched for age and gender. The data concerned event-related fMRI of brain activation during perception of facial emotional expressions. The region of interest (ROI) analysis showed stronger right amygdala activation to facial expressions in participants with lower relative to higher educational attainment (HE). The psychophysiological interaction analysis revealed that participants with HE exhibited stronger right amygdala-right insula connectivity during perception of emotional and neutral facial expressions. This exploratory study suggests the relevance of educational attainment on the neural mechanism of facial expressions processing

    Associations between depression, lifestyle and brain structure:A longitudinal MRI study

    Get PDF
    Background: Depression has been associated with decreased regional grey matter volume, which might partly be explained by an unhealthier lifestyle in depressed individuals which has been ignored by most earlier studies. Also, the longitudinal nature of depression, lifestyle and brain structure associations is largely unknown. This study investigates the relationship of depression and lifestyle with brain structure cross-sectionally and longitudinally over up to 9 years. Methods: We used longitudinal structural MRI data of persons with depression and/or anxiety disorders and controls (Nunique participants = 347, Nobservations = 609). Cortical thickness of medial orbitofrontal cortex (mOFC), rostral anterior cingulate cortex (rACC) and hippocampal volume were derived using FreeSurfer. Using Generalized Estimating Equations, we investigated associations of depression and lifestyle (Body mass index (BMI), smoking, alcohol consumption, physical activity and sleep duration) with brain structure and change in brain structure over 2 (n = 179) and 9 years (n = 82). Results: Depression status (B = -.053, p = .002) and severity (B = -.002, p = .002) were negatively associated with rACC thickness. mOFC thickness was negatively associated with BMI (B = -.004, p < .001) and positively with moderate alcohol consumption (B = .030, p = .009). All associations were independent of each other. No associations were observed between (change in) depression, disease burden or lifestyle factors with brain change over time. Conclusions: Depressive symptoms and diagnosis were independently associated with thinner rACC, BMI with thinner mOFC, and moderate alcohol consumption with thicker mOFC. No longitudinal associations were observed, suggesting that regional grey matter alterations are a long-term consequence or vulnerability indicator for depression but not dynamically or progressively related to depression course trajectory

    Default Mode Network Connectivity and Social Dysfunction in Major Depressive Disorder

    Get PDF
    Though social functioning is often hampered in Major Depressive Disorder (MDD), we lack a complete and integrated understanding of the underlying neurobiology. Connectional disturbances in the brain’s Default Mode Network (DMN) might be an associated factor, as they could relate to suboptimal social processing. DMN connectional integrity, however, has not been explicitly studied in relation to social dysfunctioning in MDD patients. Applying Independent Component Analysis and Dual Regression on resting-state fMRI data, we explored DMN intrinsic functional connectivity in relation to social dysfunctioning (i.e. composite of loneliness, social disability, small social network) among 74 MDD patients (66.2% female, Mean age = 36.9, SD = 11.9). Categorical analyses examined whether DMN connectivity differs between high and low social dysfunctioning MDD groups, dimensional analyses studied linear associations between social dysfunction and DMN connectivity across MDD patients. Threshold-free cluster enhancement (TFCE) with family-wise error (FWE) correction was used for statistical thresholding and multiple comparisons correction (P < 0.05). The analyses cautiously linked greater social dysfunctioning among MDD patients to diminished DMN connectivity, specifically within the rostromedial prefrontal cortex and posterior superior frontal gyrus. These preliminary findings pinpoint DMN connectional alterations as potentially germane to social dysfunction in MDD, and may as such improve our understanding of the underlying neurobiology

    White matter architecture in major depression with anxious distress symptoms

    Get PDF
    Background: Comorbid anxious distress is common in Major Depressive Disorder (MDD), and associated with significantly worse clinical course and treatment response. While DSM-5 recently introduced the Anxious Distress (AD) specifier as a potentially useful symptom-based subtyping scheme for MDD, its neurobiological underpinnings remain unclear. The current study hence uniquely probed whether MDD with co-occurring AD (MDD/AD+) relates to distinct perturbations in frontolimbic white matter (WM) pathways tentatively theorized in MDD/AD+ pathophysiology. Methods: Tract-based spatial statistics (TBSS) was therefore used to analyze diffusion tensor imaging data on WM microstructure, in MDD/AD+ patients (N = 20) relative to MDD patients without AD (MDD/AD-; N = 29) and healthy controls (HC; N = 39). Using TBSS, we probed fractional anisotropy and axial/radial/mean diffusivity as proxies for WM integrity. Categorical (between-groups) and dimensional (within-patients) analyses subsequently assessed how Anxious Distress in MDD impacts frontolimbic WM connectivity. Receiver-Operating Characteristics additionally assessed classification capabilities of between-groups WM effects. Results: Compared to MDD/AD- and HC participants, MDD/AD+ patients exhibited diminished integrity within the anterior thalamic radiation (ATR). Higher AD specifier scores within MDD patients additionally related to diminished integrity of the uncinate fasciculus and cingulum pathways. These effects were not confounded by key clinical (e.g., comorbid anxiety disorder) and sociodemographic (e.g., age/sex) factors, with altered ATR integrity moreover successfully classifying MDD/AD+ patients from MDD/AD- and HC participants (90% sensitivity vertical bar 73% specificity vertical bar 77% accuracy). Conclusions: These findings collectively link MDD/AD+ to distinct WM anomalies in frontolimbic tracts important to adaptive emotional functioning, and may as such provide relevant, yet preliminary, clues on MDD/AD+ pathophysiology

    Longitudinal brain changes in MDD during emotional encoding:effects of presence and persistence of symptomatology

    Get PDF
    The importance of the hippocampus and amygdala for disrupted emotional memory formation in depression is well-recognized, but it remains unclear whether functional abnormalities are state-dependent and whether they are affected by the persistence of depressive symptoms.Methods Thirty-nine patients with major depressive disorder and 28 healthy controls were included from the longitudinal functional magnetic resonance imaging (fMRI) sub-study of the Netherlands Study of Depression and Anxiety. Participants performed an emotional word-encoding and -recognition task during fMRI at baseline and 2-year follow-up measurement. At baseline, all patients were in a depressed state. We investigated state-dependency by relating changes in brain activation over time to changes in symptom severity. Furthermore, the effect of time spent with depressive symptoms in the 2-year interval was investigated.Results Symptom change was linearly associated with higher activation over time of the left anterior hippocampus extending to the amygdala during positive and negative word-encoding. Especially during positive word encoding, this effect was driven by symptomatic improvement. There was no effect of time spent with depression in the 2-year interval on change in brain activation. Results were independent of medication- and psychotherapy-use.Conclusion Using a longitudinal within-subjects design, we showed that hippocampal-amygdalar activation during emotional memory formation is related to depressive symptom severity but not persistence (i.e. time spent with depression or 'load'), suggesting functional activation patterns in depression are not subject to functional 'scarring' although this hypothesis awaits future replication
    • 

    corecore